8 resultados para Stability and Robustness

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Honey is rich in sugar content and dominated by fructose and glucose that make honey prone to crystallize during storage. Due to honey composition, the anhydrous glass transition temperature of honey is very low that makes honey difficult to dry alone and drying aid or filler is needed to dry honey. Maltodextrin is a common drying aid material used in drying of sugar-rich food. The present study aims to study the processing of honey powder by vacuum drying method and the impact of drying process and formulation on the stability of honey powder. To achieve the objectives, the series of experiments were done: investigating of maltodextrin DE 10 properties, studying the effect of drying temperature, total solid concentration, DE value, maltodextrin concentration and anti-caking agent on honey powder processing and stability. Maltodextrin provide stable glass compared to lower molecular weight sugars. Dynamic Dew Point Isotherm (DDI) data could be used to determine amorphous content of a system. The area under the first derivative curve from DDI curve is equal to the amount of water needed by amorphous material to crystallize. The drying temperature affected the amorphous content of vacuum-dried honey powder. The higher temperature seemed to result in honey powder with more amorphous component. The ratio of maltodextrin affected more significantly the stability of honey powder compared to the treatments of total solids concentration, DE value and drying temperature. The critical water activity of honey powder was lower than water activity of the equilibrium water content corresponding to BET monolayer water content. Addition of anti-caking agent increased stability and flow-ability of honey powder. Addition of Calcium stearate could inhibit collapse of the honey powder during storage.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Global biodiversity is eroding at an alarming rate, through a combination of anthropogenic disturbance and environmental change. Ecological communities are bewildering in their complexity. Experimental ecologists strive to understand the mechanisms that drive the stability and structure of these complex communities in a bid to inform nature conservation and management. Two fields of research have had high profile success at developing theories related to these stabilising structures and testing them through controlled experimentation. Biodiversity-ecosystem functioning (BEF) research has explored the likely consequences of biodiversity loss on the functioning of natural systems and the provision of important ecosystem services. Empirical tests of BEF theory often consist of simplified laboratory and field experiments, carried out on subsets of ecological communities. Such experiments often overlook key information relating to patterns of interactions, important relationships, and fundamental ecosystem properties. The study of multi-species predator-prey interactions has also contributed much to our understanding of how complex systems are structured, particularly through the importance of indirect effects and predator suppression of prey populations. A growing number of studies describe these complex interactions in detailed food webs, which encompass all the interactions in a community. This has led to recent calls for an integration of BEF research with the comprehensive study of food web properties and patterns, to help elucidate the mechanisms that allow complex communities to persist in nature. This thesis adopts such an approach, through experimentation at Lough Hyne marine reserve, in southwest Ireland. Complex communities were allowed to develop naturally in exclusion cages, with only the diversity of top trophic levels controlled. Species removals were carried out and the resulting changes to predator-prey interactions, ecosystem functioning, food web properties, and stability were studied in detail. The findings of these experiments contribute greatly to our understanding of the stability and structure of complex natural communities.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Emerging healthcare applications can benefit enormously from recent advances in pervasive technology and computing. This paper introduces the CLARITY Modular Ambient Health and Wellness Measurement Platform:, which is a heterogeneous and robust pervasive healthcare solution currently under development at the CLARITY Center for Sensor Web Technologies. This intelligent and context-aware platform comprises the Tyndall Wireless Sensor Network prototyping system, augmented with an agent-based middleware and frontend computing architecture. The key contribution of this work is to highlight how interoperability, expandability, reusability and robustness can be manifested in the modular design of the constituent nodes and the inherently distributed nature of the controlling software architecture.Emerging healthcare applications can benefit enormously from recent advances in pervasive technology and computing. This paper introduces the CLARITY Modular Ambient Health and Wellness Measurement Platform:, which is a heterogeneous and robust pervasive healthcare solution currently under development at the CLARITY Center for Sensor Web Technologies. This intelligent and context-aware platform comprises the Tyndall Wireless Sensor Network prototyping system, augmented with an agent-based middleware and frontend computing architecture. The key contribution of this work is to highlight how interoperability, expandability, reusability and robustness can be manifested in the modular design of the constituent nodes and the inherently distributed nature of the controlling software architecture.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ultra Wide Band (UWB) transmission has recently been the object of considerable attention in the field of next generation location aware wireless sensor networks. This is due to its fine time resolution, energy efficient and robustness to interference in harsh environments. This paper presents a thorough applied examination of prototype IEEE 802.15.4a impulse UWB transceiver technology to quantify the effect of line of sight (LOS) and non line of sight (NLOS) ranging in real indoor and outdoor environments. Results included draw on an extensive array of experiments that fully characterize the 802.15.4a UWB transceiver technology, its reliability and ranging capabilities for the first time. A new two way (TW) ranging protocol is proposed. The goal of this work is to validate the technology as a dependable wireless communications mechanism for the subset of sensor network localization applications where reliability and precision positions are key concerns.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This dissertation proposes and demonstrates novel smart modules to solve challenging problems in the areas of imaging, communications, and displays. The smartness of the modules is due to their ability to be able to adapt to changes in operating environment and application using programmable devices, specifically, electronically variable focus lenses (ECVFLs) and digital micromirror devices (DMD). The proposed modules include imagers for laser characterization and general purpose imaging which smartly adapt to changes in irradiance, optical wireless communication systems which can adapt to the number of users and to changes in link length, and a smart laser projection display that smartly adjust the pixel size to achieve a high resolution projected image at each screen distance. The first part of the dissertation starts with the proposal of using an ECVFL to create a novel multimode laser beam characterizer for coherent light. This laser beam characterizer uses the ECVFL and a DMD so that no mechanical motion of optical components along the optical axis is required. This reduces the mechanical motion overhead that traditional laser beam characterizers have, making this laser beam characterizer more accurate and reliable. The smart laser beam characterizer is able to account for irradiance fluctuations in the source. Using image processing, the important parameters that describe multimode laser beam propagation have been successfully extracted for a multi-mode laser test source. Specifically, the laser beam analysis parameters measured are the M2 parameter, w0 the minimum beam waist, and zR the Rayleigh range. Next a general purpose incoherent light imager that has a high dynamic range (>100 dB) and automatically adjusts for variations in irradiance in the scene is proposed. Then a data efficient image sensor is demonstrated. The idea of this smart image sensor is to reduce the bandwidth needed for transmitting data from the sensor by only sending the information which is required for the specific application while discarding the unnecessary data. In this case, the imager demonstrated sends only information regarding the boundaries of objects in the image so that after transmission to a remote image viewing location, these boundaries can be used to map out objects in the original image. The second part of the dissertation proposes and demonstrates smart optical communications systems using ECVFLs. This starts with the proposal and demonstration of a zero propagation loss optical wireless link using visible light with experiments covering a 1 to 4 m range. By adjusting the focal length of the ECVFLs for this directed line-of-sight link (LOS) the laser beam propagation parameters are adjusted such that the maximum amount of transmitted optical power is captured by the receiver for each link length. This power budget saving enables a longer achievable link range, a better SNR/BER, or higher power efficiency since more received power means the transmitted power can be reduced. Afterwards, a smart dual mode optical wireless link is proposed and demonstrated using a laser and LED coupled to the ECVFL to provide for the first time features of high bandwidths and wide beam coverage. This optical wireless link combines the capabilities of smart directed LOS link from the previous section with a diffuse optical wireless link, thus achieving high data rates and robustness to blocking. The proposed smart system can switch from LOS mode to Diffuse mode when blocking occurs or operate in both modes simultaneously to accommodate multiple users and operate a high speed link if one of the users requires extra bandwidth. The last part of this section presents the design of fibre optic and free-space optical switches which use ECVFLs to deflect the beams to achieve switching operation. These switching modules can be used in the proposed optical wireless indoor network. The final section of the thesis presents a novel smart laser scanning display. The ECVFL is used to create the smallest beam spot size possible for the system designed at the distance of the screen. The smart laser scanning display increases the spatial resoluti on of the display for any given distance. A basic smart display operation has been tested for red light and a 4X improvement in pixel resolution for the image has been demonstrated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Post-translational modification of the γ-secretase protease complexes and their substrates has an important role in controlling receptor-initiated signalling events, which are critically important in the pathogenesis of cancer, inflammatory and Alzheimer’s disease. Our lab has previously characterised an interaction between TRAF6 and presenilin-1, which lead to the identification of interleukin-1 (IL-1) receptor type 1 (IL-1R1) and Toll-like receptor-4 (TLR4) as novel γ-secretase substrates. Subsequently our group showed that TRAF6 promoted ubiquitination and γ-secretase cleavage of IL-1R1. The aim of this project is to study the association between TRAF6 and the presenilins, the critical γ-secretase complex components, and to determine the functional importance of TRAF6-mediated ubiquitination of γ-secretase substrates. Firstly, we show that the full-length presenilins are novel substrates of TRAF6-mediated Lysine-63-linked polyubiquitination. Secondly, we show that co-expression of TRAF6 and the presenilins increases the stability and alters the turnover of the presenilins. Thirdly, we reveal that TRAF6-mediated ubiquitination of presenilin does not affect γ-secretase enzyme activity, but may regulate the full-length presenilin functions such as ER Ca2+ signalling. Previously, we have reported IL-1R1 as a novel substrate of TRAF6-mediated ubiquitination. In this study, we identified five lysine residues in the IL-1R1 intracellular domain targeted by TRAF6-mediated polyubiquitination. Furthermore, mutagenesis of these five lysine residues led to decreased IL-1R1 cell surface expression, precluded the ectodomain shedding and attenuated the responsiveness to IL-1β stimulation, demonstrating the critical role of TRAF6 in IL-1R1 trafficking.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis explores the evolution of the concept of traditional Chinese femininity in relation to women’s lives in ancient China (221 BCE – A.D.1840). It proposes that the traditional Chinese femininity had been trying to seek a balance between the permanent principles and contingency plans for the stability and development of the society, which caused women’s humiliation and freedom. In reality, politicians and thinkers in ancient China had been transforming the concept of femininity itself to make it more adaptable to the social conditions of that time. This may be discussed in terms of three aspects. Firstly, the traditional concept of Chinese human relationships, including the ethical order, always emphasised the influence of individual behaviour on others and the overall stability and linked development of family, society and nation. Thus, both men and women, must be placed within this interrelated, interacting and cooperating relationship. Secondly, the association of family and country created an overlap of family and public affairs, which, objectively, facilitated the movement of women from the inner to the public arena. Thirdly, the notions of political and ethical morality and of men’s virtues and women’s virtues were integrated because of the union of family and nation. Therefore, typically virtuous women could be a source of encouragement for men and, furthermore, men formulated their virtues in the public space by formulating women’s virtues in the private space. The shaping of the gender image and concept of women in ancient China reflected the country’s changing cultural and gender norms. Chinese femininity and lifestyles, like Chinese history, were a continuous presence in the society but were also constantly changing. Through this study, it could be noted that Chinese women were not hidden and that their subjectivity and the concepts motivating them were not merely devised by a male-dominated society and culture.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Surface modification of silicon with organic monolayers tethered to the surface by different linkers is an important process in realizing future (opto-)electronic devices. Understanding the role played by the nature of the linking group and the chain length on the adsorption structures and electronic properties of these assemblies is vital to advance this technology. This Thesis is a study of such properties and contributes in particular to a microscopic understanding of induced changes in the work function of experimentally studied functionalized silicon surfaces. Using first-principles density functional theory (DFT), at the first step, we provide predictions for chemical trends in the work function of hydrogenated silicon (111) surfaces modified with various terminations. For nonpolar terminating atomic species such as F, Cl, Br, and I, the change in the work function is directly proportional to the amount of charge transferred from the surface, thus relating to the difference in electronegativity of the adsorbate and silicon atoms. The change is a monotonic function of coverage in this case, and the work function increases with increasing electronegativity. Polar species such as −TeH, −SeH, −SH, −OH, −NH2, −CH3, and −BH2 do not follow this trend due to the interaction of their dipole with the induced electric field at the surface. In this case, the magnitude and sign of the surface dipole moment need to be considered in addition to the bond dipole to generally describe the change in work function. Compared to hydrogenated surfaces, there is slight increase in the work function of H:Si(111)-XH, where X = Te, Se, and S, whereas reduction is observed for surfaces covered with −OH, −CH3, and −NH2. Next, we study the hydrogen passivated Si(111) surface modified with alkyl chains of the general formula H:Si–(CH2)n–CH2 and H:Si–X–(CH2)n–CH3, where X = NH, O, S and n = (0, 1, 3, 5, 7, 9, 11), at half coverage. For (X)–Hexyl and (X)–Dodecyl functionalization, we also examined various coverages up to full monolayer grafting in order to validate the result of half covered surface and the linker effect on the coverage. We find that it is necessary to take into account the van der Waals interaction between the alkyl chains. The strongest binding is for the oxygen linker, followed by S, N, and C, irrespective of chain length. The result revealed that the sequence of the stability is independent of coverage; however, linkers other than carbon can shift the optimum coverage considerably and allow further packing density. For all linkers apart from sulfur, structural properties, in particular, surface-linker-chain angles, saturate to a single value once n > 3. For sulfur, we identify three regimes, namely, n = 0–3, n = 5–7, and n = 9–11, each with its own characteristic adsorption structures. Where possible, our computational results are shown to be consistent with the available experimental data and show how the fundamental structural properties of modified Si surfaces can be controlled by the choice of linking group and chain length. Later we continue by examining the work function tuning of H:Si(111) over a range of 1.73 eV through adsorption of alkyl monolayers with general formula -[Xhead-group]-(CnH2n)-[Xtail-group], X = O(H), S(H), NH(2). The work function is practically converged at 4 carbons (8 for oxygen), for head-group functionalization. For tail-group functionalization and with both head- and tail-groups, there is an odd-even effect in the behavior of the work function, with peak-to-peak amplitudes of up to 1.7 eV in the oscillations. This behavior is explained through the orientation of the terminal-group's dipole. The shift in the work function is largest for NH2-linked and smallest for SH-linked chains and is rationalized in terms of interface dipoles. Our study reveals that the choice of the head- and/or tail-groups effectively changes the impact of the alkyl chain length on the work function tuning using self-assembled monolayers and this is an important advance in utilizing hybrid functionalized Si surfaces. Bringing together the understanding gained from studying single type functionalization of H:Si(111) with different alkyl chains and bearing in mind how to utilize head-group, tail-group or both as well as monolayer coverage, in the final part of this Thesis we study functionalized H:Si(111) with binary SAMs. Aiming at enhancing work function adjustment together with SAM stability and coverage we choose a range of terminations and linker-chains denoted as –X–(Alkyl) with X = CH3, O(H), S(H), NH(2) and investigate the stability and work function of various binary components grafted onto H:Si(111) surface. Using binary functionalization with -[NH(2)/O(H)/S(H)]-[Hexyl/Dodecyl] we show that work function can be tuned within the interval of 3.65-4.94 eV and furthermore, enhance the SAM’s stability. Although direct Si-C grafted SAMs are less favourable compared to their counterparts with O, N or S linkage, regardless of the ratio, binary functionalized alkyl monolayers with X-alkyl (X = NH, O) is always more stable than single type alkyl functionalization with the same coverage. Our results indicate that it is possible to go beyond the optimum coverage of pure alkyl functionalized SAMs (50%) by adding a linker with the correct choice of the linker. This is very important since dense packed monolayers have fewer defects and deliver higher efficiency. Our results indicate that binary anchoring can modify the charge injection and therefore bond stability while preserving the interface electronic structure.